首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   473篇
  免费   71篇
  国内免费   158篇
  2023年   13篇
  2022年   11篇
  2021年   16篇
  2020年   27篇
  2019年   19篇
  2018年   27篇
  2017年   26篇
  2016年   21篇
  2015年   34篇
  2014年   22篇
  2013年   32篇
  2012年   14篇
  2011年   34篇
  2010年   28篇
  2009年   32篇
  2008年   22篇
  2007年   25篇
  2006年   37篇
  2005年   30篇
  2004年   16篇
  2003年   27篇
  2002年   25篇
  2001年   30篇
  2000年   25篇
  1999年   12篇
  1998年   12篇
  1997年   8篇
  1996年   5篇
  1995年   10篇
  1994年   7篇
  1993年   8篇
  1992年   7篇
  1991年   7篇
  1990年   12篇
  1989年   7篇
  1988年   2篇
  1987年   3篇
  1986年   3篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1958年   2篇
排序方式: 共有702条查询结果,搜索用时 15 毫秒
91.
Airborne particulates were collected over a period of twelve months by the use of Hi-Vol samplers in the basin of Athens, Greece. N-Hexane extracts were tested in a battery ofin vitro tests for their ability to induce mutation in bacteria as well as mutation, sister chromatid exchange and morphological transformation in cultured mammalian cells. Positive results were found for mutagenicity withSalmonella strain TA98 in the Ames assay, for sister chromatid exchange induction in CHO cells and for transformation in BALB/c 3T3 cells in culture. They also showed weak non-doserelated induction of ouabain resistance in BALB/c 3T3 cells. The contribution of oxidizing and nitrating agents found in the Athens atmosphere, together with sunlight UV irradiation in the formation of direct acting mutagens and potential carcinogens from ambient polycyclic aromatic hydrocarbons, is suggested.Abbreviations FCS fetal calf serum - FPG fluorescent-plus-Giemsa technique - ouaR ouabain resistant - PAH polycyclic aromatic hydrocarbon - SCE sister chromatid exchange - TSP total suspended particulate  相似文献   
92.
Cumulative effects of atmospheric N deposition mayincrease N export from watersheds and contribute tothe acidification of surface waters, but naturalfactors (such as forest productivity and soildrainage) that affect forest N cycling can alsocontrol watershed N export. To identify factors thatare related to stream-water export of N, elevationalgradients in atmospheric deposition and naturalprocesses were evaluated in a steep, first-orderwatershed in the Catskill Mountains of New York, from1991 to 1994.Atmospheric deposition of SO 4 2– , andprobably N, increased with increasing elevation withinthis watershed. Stream-water concentrations ofSO 4 2– increased with increasing elevationthroughout the year, whereas stream-waterconcentrations of NO 3 decreased withincreasing elevation during the winter and springsnowmelt period, and showed no relation with elevationduring the growing season or the fall. Annual exportof N in stream water for the overall watershed equaled12% to 17% of the total atmospheric input on thebasis of two methods of estimation. This percentagedecreased with increasing elevation, from about 25%in the lowest subwatershed to 7% in the highestsubwatershed; a probable result of an upslope increasein the thickness of the surface organic horizon,attributable to an elevational gradient in temperaturethat slows decomposition rates at upper elevations. Balsam fir stands, more prevalent at upper elevationsthan lower elevations, may also affect the gradient ofsubwatershed N export by altering nitrification ratesin the soil. Variations in climate and vegetationmust be considered to determine how future trends inatmospheric deposition will effect watershed export ofnitrogen.  相似文献   
93.
The temporal and spatial distribution of fires for an area in east-central Senegal was determined on the basis of multi-temporal NOAA AVHRR satellite images. Three years of data (1990–1992) were analyzed defining the boundary between two different fire regimes: very few and scattered fires to the north with the majority of fires south of the boundary. This boundary was stable for the three dry seasons examined and was identical to the northernmost extension of fires as determined by visual inspection of a hard copy Landsat image mosaic. Fire frequencies were analyzed in relation to dominant vegetation types and yearly precipitation, and the findings compared to results of a field survey of the local population's perceptions of the causes and implications of fires. Survey results clearly showed that the use of fire in the study area is closely linked to the utilization of the environment for livestock grazing and crop production. We conclude that the local population has a high degree of awareness about the application of fire, that different fire use practices concerning can be identified respectively in the grasslands of the northern and the savanna of the southern parts of the study area, and that these practices reflect a well adapted production strategy. Finally, we recommend policy decisions be more flexible in the light of local understanding of fire use.  相似文献   
94.
The effects of wind speed and atmospheric pressure on male mate searching behavior, modulated by a female sex pheromone, were investigated in the aphid parasitoid Aphidius nigripes (Hymenoptera: Aphidiidae). Male A. nigripe generally did not reach females at wind speeds of 100 cm/sec, as the majority of individuals taking flight in the pheromone plume (81.8%) were unable to sustain upwind flight. At lower wind velocities, male responsiveness to females generally decreased with distance from the source. However, wind speeds approaching the upper threshold (100 cm/sec) tended to eliminate this distance effect. Therefore, there appears to be a trade-off between the need for higher wind speeds to detect the pheromone source from long distances, and a reduction in male flight capacity as wind velocity increases. Our results also indicate that chemical communication in A. nigripes could be affected by variations in atmospheric pressure, as we observed a relationship between pressure fluctuations in the 24 hr prior to testing and male responsiveness to females. The importance of these abiotic factors on mate searching behavior is discussed within the context of the reproductive biology of A. nigripes.  相似文献   
95.
A comparison of instrumental neutron activation analysis (INAA) and proton-induced X-ray emission (PIXE) results for sizefractionated atmospheric aerosols (“coarse” and “fine” fractions with an equivalent aerodynamic diameter of 2–10 Μm and < 2 Μm, respectively, or the PM10 fraction) showed that PIXE yielded significantly lower results for the PM10 and coarse fractions, especially for elements with a low Z resulting from a particle size effect. Somewhat lower PIXE results were also obtained for the fine fraction of atmospheric aerosols. A correction is also needed for irregularly shaped deposits of combustion aerosols collected by a cascade impactor in 11 size fractions ranging from 0.016 to 14.3 Μm, as well as for thick samples of fly and bottom ashes. An equivalent layer thickness (ELT) model is proposed to correct the matrix effects in PIXE. The approaches for the calculation of ELT using a comparison of PIXE and INAA results or by comparing PIXE results obtained using two different incident proton beam energies (1.31 and 2.35 MeV) are described. The correction for the ash pellets and irregular deposits are also discussed.  相似文献   
96.
Nitrogen additions as NH4NO3 corresponding to 0 (N0), 1 (N1), 3 (N3) and 10 (N10) g N m-2 yr-1 were made to Sphagnum magellanicum cores at two-week intervals in situ at four sites across Europe, i.e. Lakkasuo (Finland), Männikjärve (Estonia), Moidach More (UK) and Côte de Braveix (France). The same treatments were applied in a glasshouse experiment in Neuchâtel (Switzerland) in which the water table depth was artificially maintained at 7, 17 and 37 cm below the moss surface. In the field, N assimilation in excess of values in wet deposition occurred in the absence of growth, but varied widely between sites, being absent in Lakkasuo (moss N:P ratio 68) and greatest in Moidach More (N:P 21). In the glasshouse, growth was reduced by lowering the water table without any apparent effect on N assimilation. Total N content of the moss in field sites increased as the mean depth of water table increased indicating growth limitation leading to increased N concentrations which could reduce the capacity for N retention. Greater contents of NH4+ in the underlying peat at 30 cm depth, both in response to NH4NO3 addition and in the unamended cores confirmed poor retention of inorganic N by the moss at Lakkasuo. Nitrate contents in the profiles at Lakkasuo, Moidach More, and Côte de Braveix were extremely low, even in the N10 treatment, but in Männikjärve, where the mean depth of water table was greatest and retention absent, appreciable amounts of NO3- were detected in all cores. It is concluded that peatland drainage would reduce the capture of inorganic N in atmospheric deposition by Sphagnum mosses.  相似文献   
97.
1. Physiological experiments have indicated that the lower CO2 levels of the last glaciation (200 μmol mol?1) probably reduced plant water-use efficiency (WUE) and that they combined with increased aridity and colder temperatures to alter vegetation structure and composition at the Last Glacial Maximum (LGM). 2. The effects of low CO2 on vegetation structure were investigated using BIOME3 simulations of leaf area index (LAI), and a two-by-two factorial experimental design (modern/LGM CO2, modern/LGM climate).3. Using BIOME3, and a combination of lowered CO2 and simulated LGM climate (from the NCAR-CCM1 model), results in the introduction of additional xeric vegetation types between open woodland and closed-canopy forest along a latitudinal gradient in eastern North America.4. The simulated LAI of LGM vegetation was 25–60% lower in many regions of central and eastern United States relative to modern climate, indicating that glacial vegetation was much more open than today.5. Comparison of factorial simulations show that low atmospheric CO2 has the potential to alter vegetation structure (LAI) to a greater extent than LGM climate.6. If the magnitude of LAI reductions simulated for glacial North America were global, then low atmospheric CO2 may have promoted atmospheric warming and increased aridity, through alteration of rates of water and heat exchange with the atmosphere.  相似文献   
98.
We report changes in nitrogen cycling in Florida scrub oak in response to elevated atmospheric CO2 during the first 14 months of experimental treatment. Elevated CO2 stimulated above-ground growth, nitrogen mass, and root nodule production of the nitrogen-fixing vine, Galactia elliottii Nuttall. During this period, elevated CO2 reduced rates of gross nitrogen mineralization in soil, and resulted in lower recovery of nitrate on resin lysimeters. Elevated CO2 did not alter nitrogen in the soil microbial biomass, but increased the specific rate of ammonium immobilization (NH4+ immobilized per unit microbial N) measured over a 24-h period. Increased carbon input to soil through greater root growth combined with a decrease in the quality of that carbon in elevated CO2 best explains these changes. These results demonstrate that atmospheric CO2 concentration influences both the internal cycling of nitrogen (mineralization, immobilization, and nitrification) as well as the processes that regulate total ecosystem nitrogen mass (nitrogen fixation and nitrate leaching) in Florida coastal scrub oak. If these changes in nitrogen cycling are sustained, they could cause long-term feedbacks to the growth responses of plants to elevated CO2. Greater nitrogen fixation and reduced leaching could stimulate nitrogen-limited plant growth by increasing the mass of labile nitrogen in the ecosystem. By contrast, reduced nitrogen mineralization and increased immobilization will restrict the supply rate of plant-available nitrogen, potentially reducing plant growth. Thus, the net feedback to plant growth will depend on the balance of these effects through time.  相似文献   
99.
At elevated atmospheric CO2 concentrations ([CO2]a), photosynthetic capacity (Amax) and root fraction (ηR, the ratio of root to plant dry mass) increased in some studies and decreased in others. Here, we have explored possible causes of this, focusing on the relative magnitudes of the effects of elevated [CO2]a on specific leaf (nm) and plant (np) nitrogen concentrations, leaf mass per unit area (h), and plant nitrogen productivity (α). In our survey of 39 studies with 35 species, we found that elevated [CO2]a led to decreased nm and np in all the studies and to increased h and α in most of the studies. The magnitudes of these changes varied with species and with experimental conditions. Based on a model that integrated [CO2]a-induced changes in leaf nitrogen into a biochemically based model of leaf photosynthesis, we predicted that, to a first approximation, photosynthesis will be upregulated (Amax will increase) when growth at increased [CO2]a leads to increases in h that are larger than decreases in nm. Photosynthesis will be downregulated (Amax will decrease) when increases in h are smaller than decreases in nm. The model suggests that photosynthetic capacity increases at elevated [CO2]a only when additional leaf mesophyll more than compensates the effects of nitrogen dilution. We considered two kinds of regulatory paradigms that could lead to varying responses of ηR to elevated [CO2]a, and compared the predictions of each with the data. A simple static model based on the functional balance concept predicts that ηR should increase when neither np nor h is very responsive to elevated [CO2]a. The quantitative and qualitative agreement of the predictions with data from the literature, however, is poor. A model that predicts ηR from the relative sensitivities of photosynthesis and relative growth rate to elevated [CO2]a corresponds much more closely to the observations. In general, root fraction increases if the response of photosynthesis to [CO2]a is greater than that of relative growth rate.  相似文献   
100.
Gas exchange and dry-weight production in Opuntia ficus-indica, a CAM species cultivated worldwide for its fruit and cladodes, were studied in 370 and 750 μmol mol−1 CO2 at three photosynthetic photon flux densities (PPFD: 5, 13 and 20 mol m−2 d−1). Elevated CO2 and PPFD enhanced the growth of basal cladodes and roots during the 12-week study. A rise in the PPFD increased the growth of daughter cladodes; elevated CO2 enhanced the growth of first-daughter cladodes but decreased the growth of the second-daughter cladodes produced on them. CO2 enrichment enhanced daily net CO2 uptake during the initial 8 weeks after planting for both basal and first-daughter cladodes. Water vapour conductance was 9 to 15% lower in 750 than in 370 μmol mol−1 CO2. Cladode chlorophyll content was lower in elevated CO2 and at higher PPFD. Soluble sugar and starch contents increased with time and were higher in elevated CO2 and at higher PPFD. The total plant nitrogen content was lower in elevated CO2. The effect of elevated CO2 on net CO2 uptake disappeared at 12 weeks after planting, possibly due to acclimation or feedback inhibition, which in turn could reflect decreases in the sink strength of roots. Despite this decreased effect on net CO2 uptake, the total plant dry weight at 12 weeks averaged 32% higher in 750 than in 370 μmol mol−1 CO2. Averaged for the two CO2 treatments, the total plant dry weight increased by 66% from low to medium PPFD and by 37% from medium to high PPFD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号